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Abstract

Boundary layer similarity reductions for thermal convection adjacent to inclined heated plates with an irregular
leading edge are presented. The theory is outlined using three examples: Newtonian convection over an isothermal
plate, Darcian convection over a nonuniformly heated plate, and mixed convection of Newtonian shear flow over a
nonuniformly heated plate. These reductions represent a natural extension of results obtained by the author for Blasius
flow over a flat plate with an irregular leading edge. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to show how one may
construct asymptotic similarity reductions for thermal
convection over steeply inclined plates with irregular
leading edges. Both natural and mixed convection with
variable heat transfer are included. The results presented
here represent a direct extension to thermally active
wall-bounded flows of the work reported by Weidman
[1] for Blasius boundary layer flow over a plate with an
irregular leading edge.

The mathematical analysis for convection flows that
develop over plates with irregular leading edges will be
elucidated with three examples, beginning with natural
convection of a Newtonian fluid above an inclined iso-
thermal plate. In the second example, natural convection
flow in a fluid-saturated porous medium bounded by an
inclined, nonuniformly heated plate is considered. The
last example deals with mixed convection driven by the
uniform shear of a Newtonian fluid streaming past an
inclined plate with a specific power-law temperature
distribution. Velocities (u,v,w) along coordinate direc-
tions (x,y,z) are employed, with x the streamwise co-
ordinate antiparalled the projection of gravity g along
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the plate, y the plate-normal coordinate, and z the
spanwise coordinate. All plates are flat with an irregular
leading edge located at x =x.(z) with planform as
sketched in Fig. 1; plates with an irregular leading edge
that are curved in the streamwise direction will be con-
sidered in the discussion of results.

2. Natural convection of a Newtonian fluid over an
inclined isothermal plate

We consider the boundary layer form of momentum
and energy equations for incompressible flow in the
Boussinesq limit. Scaling coordinates with the plate
length /, velocities with v//, and introducing the tem-
perature variable 0= (7 —T,,)/AT, the thermal
boundary layer equations for steady flow, with zero
streamwise pressure gradient, may be written in the
nondimensional form

u.+v, =0, (1)

uu, + vu, = u,, + (Grsine)#, (2)
1

ub, + v, = ;0»" (3)

The three dimensionless parameters are the plate incli-
nation angle ¢ measured from horizontal, the Grashof
number Gr = gBATI*/v?, and the Prandtl number
o =v/k. The dimensional constants are the thermal
contrast AT = T, — T, > 0 between the uniform leading

0017-9310/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(01)00098-9



4712 P.D. Weidman | International Journal of Heat and Mass Transfer 44 (2001) 4711-4715

Nomenclature Y shear rate
o(x,z) boundary layer similarity function
C integration constant € plate inclination angle
F(x) integration function 7(x,»,z) independent similarity variable
f velocity similarity variable 0 dimensionless temperature variable
Gr Grashof number K thermal diffusivity of Newtonian fluid
g gravity; temperature similarity variable K* thermal diffusivity of liquid-saturated
K permeability of porous matrix porous matrix
/ plate length A wall temperature distribution exponent
Ra Rayleigh number u scaling factor (Rasine or Grsine)
T temperature v kinematic viscosity
AT temperature contrast a Prandtl number
U free-stream velocity ¢(x,z)  velocity similarity function
u,v streamwise and plate-normal velocities V(x,z)  temperature similarity function
X, ),z streamwise, plate normal and spanwise
coordinates Subscripts
Greek symbols e leading edge
p volume expansion coefficient 00 free-stream
tions; further consideration of this point is deferred to
X the discussion of results.
A Scaling out Grsine = p in the usual manner [2]

x,(2)

»
v
4
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Fig. 1. Coordinates (x,z) attached to a flat plate, inclined at
angle ¢ to the horizontal, with an irregular leading edge x.(z);
not shown in this planform view is the plate-normal y-coordi-
nate. The surface component of gravity g sin € and the direction
of a possible external streaming motion U along the plate are
also indicated.

edge temperature 7, = T(x.(z),0,z) and the uniform
ambient fluid temperature T, the uniform gravitational
constant g; the fluid properties of interest are its volume
expansion coefficient f3, its kinematic viscosity v, and its
thermal diffusivity x. Since plate-normal buoyancy ef-
fects are absent, it is tacitly assumed here and in the
following examples that the plate is steeply inclined. The
exclusion of horizontal and slightly inclined plates has
consequences for finding irregular leading edge solu-

x—x, you My u— P, v g, 4)

gives the one-parameter family of governing partial
differential equations

u,+v, =0, (5)

un, + v, = u,, + 0, (6)
1

ub, + v0, = p 0,. (7)

For a plate held at constant temperature, we posit the
three-dimensional similarity solution form

u(x,y,z) = ¢(x,2)f'(n), 0(x,y,2) = g(n),
_ Y
’1(7‘7)’72) - (5(

x,z)’

which transforms the boundary layer equations into the
one-parameter family of PDEs
2

0
I+ 6000) ff" = &S +—g =0, (8)

¢
g +06(6¢),fg' =0, )
in which a prime denotes differentiation with respect to
similarity variable n. ODEs are obtained when

2

W60, =C Fo=c, Do

where C,, C,, and C; are constants. These are, in fact,
PDEs for 6 and ¢ in terms of x and z. Eliminating
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from the first two equations gives, for appropriate
choice of constants C; and C,, the result ¢¢, =1/2
which, when integrated on x, yields

o(x,z) =[x+ F(z)]l/z.

Fixing ¢ = 0 at the leading edge x = x.(z) determines the
unknown function F(z) = —x,.(z), and hence

lx,2) = [ —xe(2)] .

The choice C; =1 in the third restriction furnishes the
boundary layer thickness distribution over the surface of
the plate, viz.

3(x,2) = [x — xe(2)])*.

The remaining constants are then C; =3/4 and
C, =1/2 in which case the coupled pair of nonlinear
ODE:s governing the natural convection flow are

U 3 1 1 )
f +fo *§f2+g:07 (10)

3
g”—O—Zafg’:O. (11)

It is well known that these equations possess solutions
satisfying the physically relevant boundary conditions

f(0)=0, f(0)=0, f(c0)=0,
g(0) =1, g(o0) =0.

All boundary conditions at 7 = 0 are applied on the plate
where x > x.(z). It is understood, however, that these
asymptotic results admit a constant shift in the x-coor-
dinate since the boundary layer equations break down in
the vicinity of the leading edge where velocity curvature
becomes important. Eqs. (10) and (11) were originally
found by Pohlhausen [3] for planar flow over a flat plate
with a straight leading edge; in the present problem they
govern the three-dimensional velocity and temperature
fields emanating from an irregular leading edge.

3. Natural convection of a Darcian fluid over a non-
uniformly heated inclined plate

Consider now the motion of a liquid fully saturating
a uniformly porous medium for which the Darcian
equations reported by Wooding [4] are employed. Scal-
ing spatial coordinates with /, percolation velocities with
k*/1, and using the dimensionless temperature 0 intro-
duced in the previous section gives the Darcy boundary
layer equations

u, +v, =0, (12
u = (Rasine)0), (13)
ul, 4+ v0, = 0,,, (14)

~

where Ra = gKATI/vk* is the porous media Rayleigh
number. The new dimensional quantities K and x* are,
respectively, the permeability of the medium and the
thermal diffusivity of the liquid-saturated porous matrix.
Again it has been tacitly assumed that the plate is of
sufficient inclination for the plate-normal buoyancy term
to be neglected at leading order. The factor Rasine = u
may be scaled out in the usual manner [2]

x—x, you Py, u— g, v— @,

giving in the new dimensionless variables u = 6, and
elimination of 0 in the remaining equations yields the
parameter-free system of PDEs

u.+v, =0, (15)
Uy, + vy = U,y (16)

These are recognized as the Prandtl [5S] boundary layer
equations for isothermal flow of a viscous fluid over a
flat plate that were analyzed in detail by Blasius [6]; here,
however, there is slip at the wall in the Darcy approxi-
mation.

Consider now the situation where the temperature of
the plate bounding the porous medium takes on a
power-law profile [x — x.(z)]" emanating from the irreg-
ular leading edge. In this case the ansatz for similarity
taken as

u(xvyvz) = H(X,y,z) = [x 7xe(Z)];"f/(i1),

n(x,y,z) =

o(x,z)

transforms Egs. (15) and (16) into

S 20 = xe(@)] T = S+ 00— xe ()] " = 0.
(17)

This becomes an ODE when

Fh—x(@)]) " =C, 90 x—x(2)] =G,

in which the constants C; and C, must be chosen so that
a self-consistent pair of PDEs for the boundary layer
thickness distribution 0(x,z) is obtained. Selecting
C; =1 and integrating the first equation on x with the
stipulation that the boundary layer originates at the ir-
regular leading edge gives

3(x,2) = [x — xe(2))"
from which the second constant C; = (1 — 1)/2 is found.
Hence the governing similarity equation is

/_/// + (1 ‘g;h)jf// _ /l,f/z — 0 (18)

to be solved with boundary conditions

f(0)=0, f'(0)=1, f'(c0)=0.
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The second boundary condition corresponds to a heated
plate when u is taken as the temperature, and to wall slip
when u is taken as the streamwise velocity. The range
0 < 2 <1 for physically relevant wall temperature dis-
tributions are the same as those reported by Cheng and
Minkowycz [7] who first solved the problem for a
straight leading edge: A = 0 corresponds to an isother-
mal wall; 2 =1/3 gives a uniform wall heat flux; and
A =1 is the limiting case for which the boundary layer
thickness is constant.

4. Uniform shear flow of a Newtonian fluid over a heated
inclined plate

As a final illustration we consider mixed convection
above a steeply inclined plate subjected to a streamwise
uniform shear flow U = yy of strain rate y. The author is
not aware of any previous discussion of this particular
mixed convection problem in the heat transfer literature,
though a general discussion of mixed convection flows is
given in [8] and forced convection with uniform shear is
a problem that has received considerable attention; see
for example, [9]. Normalizing coordinates with \/v/_y
and velocities with /vy for incompressible boundary
layer flow in the Boussinesq approximation again yields
Egs. (1)~(3) but with the modified Grashof number
Gr = gBAT/v'/?y2. Using this Grashof number, the
affine transformation (4) again produces Eqgs. (5)—(7),
but now the dimensionless far field boundary condition
on the streamwise velocity is

u(x,y,z) —y, asy— oo. (19)
A similarity reduction posited in the form

u(xvyvz) - ¢(X,Z)f/(i’]), 0(x7yvz) - l//(x,z)g(n),

e

transforms Eqgs. (5)—(7) into the coupled system of PDEs

<2

ﬂwﬂwm¢ﬂ—5%Jﬂ+%}g:m (20)
2

¢ 40000 s¢ - | =0 e

that reduce to ODEs under the restriction that the four
distinct coefficient functions of (x,z) are constant.
Moreover, boundary condition (19) is of similarity form
only for the choice ¢ = § and hence the restrictions for
similarity are

Yo = C;, %53 =Cy.

Integrating the second relation on x for the convenient
choice C, = 1/3 gives

3 =x+F(2),

3, =C, 86, =0,

which satisfies the leading edge condition d(x.(z),z) =0
if F(z) = —x.(z). This result, with the choice C; =1,
yields

d)(x,z) = (5()6,2) = [x _xe(z)}l/Ev
W02) = - xe()]

The remaining constants are then C; =2/3 and
Cy = —1/3 in which case the coupled ODEs governing
the mixed convection flow are

I 2 ol 1 12 _

S +§/f —g.f +g=0, (22)
" 2 ou ) 1 ! 70 23
g +6{§.fg +§fg} = (23)

to be solved with boundary conditions
f0)=0, f(0)=0, g(0)=1,
fn)—n, g —0 asn— oo

No analytical solutions have been found for specific
choices of o, so it appears that the entire family of
Prandtl number-dependent solutions must be obtained
by direct numerical integration.

In concluding this section, it may be noted that wall
mass transfer can be included in the problem if the wall
transpiration v(x,0,z) is proportional to [x — x.(z)]"/*;
in this case, however, a streamwise pressure gradient
of the same x-dependence is required to maintain the
flow.

5. Discussion and conclusion

The intuitive result that a boundary layer flow gen-
erated by an external rectilinear stream parallel to a flat
plate with an irregular leading edge will develop ident-
ical asymptotic velocity profiles at each station x — x.(z)
from the leading edge was proven rigorously by Weid-
man [1]. In this paper we have shown that the same
result holds for the velocity and temperature fields in
natural and mixed convection flow along inclined heated
plates. For natural convection the component of buoy-
ancy that drives the motion is rectilinear over the surface
of the plate so the flow develops only in that direction.
For mixed convection, it is necessary that the external
stream be aligned with the buoyancy force to ensure that
the fluid moves rectilinearly along the plate. It should
also be evident that these same types of similarity re-
ductions are possible for forced convection flows ema-
nating from an irregular leading edge, since then
temperature is a passive scalar.

We now return to the point mentioned earlier that all
examples discussed in this paper deal with steeply in-
clined flat plates for which the O(1) buoyancy force acts
tangent to the surface of the plate. Upward-facing he-
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ated horizontal plates like that originally discussed by
Stewartson [10] are necessarily excluded because the
fluid motion is driven not by a component of buoyancy
acting along the plate, but rather by a horizontal ther-
mally-induced pressure gradient. At the leading edge,
this pressure gradient is perpendicular to the leading
edge. For example, the convection flow that develops
above a heated upward-facing horizontal plate of
wedge-shape planform will consist of two streams, each
respectively moving normal to their straight leading
edges; the two boundary layer flows will collide ob-
liquely along the wedge centerline and most likely erupt
in a thermal plume. Convection downstream of a very
irregular leading edge will have even more complicated
behavior and it is difficult to see how the asymptotic flow
can assume similarity form. The same holds true of a
slightly-inclined upward-facing heated plate, a situation
first considered by Jones [11] in the absence of wall
transpiration and later by Weidman and Amberg [2] to
include the effects wall transpiration distributions that
admit self-similar solutions; in each case the plate-tan-
gent component of buoyancy and the thermally-induced
pressure gradient are of equal importance.

An extension to flows with other rectilinear forces
acting along the surface of the plate is plausible. If all the
dominant forces driving the fluid motion are collinear
and parallel to the surface of a flat plate, developing in a
manner that depends only on the distance x — x.(z) from
the leading edge, then one should expect three-dimen-
sional similarity reductions for the asymptotic flow far
downstream of the leading edge.

We conclude this discussion by considering the
problem of natural convection above a steeply inclined
curved plate with an irregular leading edge where the
curvilinear streamwise x-coordinate is everywhere
antiparallel the component of gravity projected on the
plate. A family of shapes for which self-similar solu-
tions exist in two-dimensional planar flow over uni-
formly heated curved plates with straight leading edges
has been reported by Braun et al. [12]. When the
straight leading edge becomes irregular, it is apparent
that no asymptotic self-similar solution exists because a
requirement for similarity is that the streamwise forces
acting on the fluid particles at the leading edge be
uniform. For an isothermal curved plate, for example,
the leading edge buoyancy force proportional to
gAT sine, is nonuniform since the surface inclination
angle e, at the leading edge varies with x.(z) which itself

is nonuniform in every case except that for which the
leading edge is straight and perpendicular to the ensu-
ing direction of flow.
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